If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x+18x^2=0
a = 18; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·18·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*18}=\frac{-84}{36} =-2+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*18}=\frac{0}{36} =0 $
| 40+15+0,25x=45+0,35x | | √(3y-1)^2=√0 | | x^2+2x-11=-3 | | 10g=750 | | -5(2+x)=35 | | z+331=505 | | 7x-3(3+4x=19 | | 5/6=h/9 | | x=5(x-1)=7 | | 49x^2−28x+4=0 | | g-52=17 | | 2(a+3)-a=a+6 | | j+8=19 | | 1/12y-4=-17 | | 3n=3(1) | | 5(p+15)+9=3(p-2) | | 3-4x+x²=0 | | 80+2x-20=180 | | 4y−18=3y+2 | | 22000-50x=16000+150x | | 2/3m=-8/9 | | 13+4x=12+41 | | 4y−1=3y+2 | | 2(x+8)=6(x-9) | | 5x+6=-8-2x | | (x+8)(4x-43)= | | 20p-13p-6p+2p=18 | | 24x-1=10x+67 | | |t/2-2/6|=4/12 | | f+6+6(f+2)=0 | | 16y+y-8y-3y-3y=15 | | -5x-73=2x+11 |